{ "id": "math/0507026", "version": "v1", "published": "2005-07-01T18:38:47.000Z", "updated": "2005-07-01T18:38:47.000Z", "title": "RSK Insertion for Set Partitions and Diagram Algebras", "authors": [ "Tom Halverson", "Tim Lewandowski" ], "comment": "24 pages", "categories": [ "math.CO", "math.RT" ], "abstract": "We give combinatorial proofs of two identities from the representation theory of the partition algebra $C A_k(n), n \\ge 2k$. The first is $n^k = \\sum_\\lambda f^\\lambda m_k^\\lambda$, where the sum is over partitions $\\lambda$ of $n$, $f^\\lambda$ is the number of standard tableaux of shape $\\lambda$, and $m_k^\\lambda$ is the number of \"vacillating tableaux\" of shape $\\lambda$ and length $2k$. Our proof uses a combination of Robinson-Schensted-Knuth insertion and jeu de taquin. The second identity is $B(2k) = \\sum_\\lambda (m_k^\\lambda)^2$, where $B(2k)$ is the number of set partitions of $\\{1, >..., 2k\\}$. We show that this insertion restricts to work for the diagram algebras which appear as subalgebras of the partition algebra: the Brauer, Temperley-Lieb, planar partition, rook monoid, planar rook monoid, and symmetric group algebras.", "revisions": [ { "version": "v1", "updated": "2005-07-01T18:38:47.000Z" } ], "analyses": { "subjects": [ "05E10" ], "keywords": [ "set partitions", "diagram algebras", "rsk insertion", "partition algebra", "symmetric group algebras" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7026H" } } }