{ "id": "math/0507006", "version": "v1", "published": "2005-07-01T05:32:31.000Z", "updated": "2005-07-01T05:32:31.000Z", "title": "The moduli space of 5 points on P^1 and K3 surfaces", "authors": [ "Shigeyuki Kondo" ], "comment": "15 pages", "categories": [ "math.AG" ], "abstract": "We show that the moduli space of ordered 5 points on the projective line is isomorphic to an arithmetic quotient of a complex ball by using the theory of periods of K3 surfaces. We also discuss a relation between our uniformization and the one given by Shimura, Terada and Deligne-Mostow.", "revisions": [ { "version": "v1", "updated": "2005-07-01T05:32:31.000Z" } ], "analyses": { "subjects": [ "14J10", "14J28" ], "keywords": [ "k3 surfaces", "moduli space", "complex ball", "arithmetic quotient", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7006K" } } }