{ "id": "math/0506610", "version": "v1", "published": "2005-06-30T02:11:57.000Z", "updated": "2005-06-30T02:11:57.000Z", "title": "The Alternating Groups and K3 Surfaces", "authors": [ "D. -Q. Zhang" ], "comment": "Journal of Pure and Applied Algebra (21 pages) to appear", "categories": [ "math.AG" ], "abstract": "In this note, we consider all possible extensions G of a non-trivial perfect group H acting faithfully on a K3 surface X. The pair (X, G) is proved to be uniquely determined by G if the transcendental value of G is maximum. In particular, we have G/H < Z/(2) + Z/(2), if H is the alternating group A_5 and normal in G.", "revisions": [ { "version": "v1", "updated": "2005-06-30T02:11:57.000Z" } ], "analyses": { "subjects": [ "14J28", "14J50", "14J30" ], "keywords": [ "k3 surface", "alternating group", "non-trivial perfect group", "transcendental value" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6610Z" } } }