{ "id": "math/0506578", "version": "v1", "published": "2005-06-28T19:12:42.000Z", "updated": "2005-06-28T19:12:42.000Z", "title": "Capable groups of prime exponent and class 2, II", "authors": [ "Arturo Magidin" ], "comment": "30 pp", "categories": [ "math.GR" ], "abstract": "We consider the capability of $p$ groups of class two and odd prime exponent. We use linear algebra and counting arguments to establish a number of new results. In particular, we settle the 4-generator case, and prove a sufficient condition based on the ranks of $G/Z(G)$ and $[G,G]$.", "revisions": [ { "version": "v1", "updated": "2005-06-28T19:12:42.000Z" } ], "analyses": { "subjects": [ "20D15", "20F12", "15A04" ], "keywords": [ "capable groups", "odd prime exponent", "linear algebra", "sufficient condition", "counting arguments" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6578M" } } }