{ "id": "math/0506360", "version": "v1", "published": "2005-06-17T22:24:30.000Z", "updated": "2005-06-17T22:24:30.000Z", "title": "Grothendieck bialgebras, Partition lattices and symmetric functions in noncommutative variables", "authors": [ "Nantel Bergeron", "Christophe Hohlweg", "Mercedes Rosas", "Mike Zabrocki" ], "comment": "17 pages", "journal": "Electron. J. Combin. 13 (2006), no. 1, Research Paper 75, 19 pp.", "categories": [ "math.CO", "math.RA" ], "abstract": "We show that the Grothendieck bialgebra of the semi-tower of partition lattice algebras is isomorphic to the graded dual of the bialgebra of symmetric functions in noncommutative variables. In particular this isomorphism singles out a canonical new basis of the symmetric functions in noncommutative variables which would be an analogue of the Schur function basis for this bialgebra.", "revisions": [ { "version": "v1", "updated": "2005-06-17T22:24:30.000Z" } ], "analyses": { "subjects": [ "16S99", "05E05", "05E10", "16G30", "16S34", "16W30" ], "keywords": [ "symmetric functions", "noncommutative variables", "grothendieck bialgebra", "partition lattice algebras", "schur function basis" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6360B" } } }