{ "id": "math/0506326", "version": "v2", "published": "2005-06-16T11:17:55.000Z", "updated": "2006-01-25T10:01:05.000Z", "title": "Sharpenings of Li's criterion for the Riemann Hypothesis", "authors": [ "André Voros" ], "comment": "10 pages, Math. Phys. Anal. Geom (2006, at press). V2: minor text corrections and updated references", "journal": "Math. Phys. Anal. Geom. 9 (2006) 53-63", "doi": "10.1007/s11040-005-9002-8", "categories": [ "math.NT", "math.CV" ], "abstract": "Exact and asymptotic formulae are displayed for the coefficients $\\lambda_n$ used in Li's criterion for the Riemann Hypothesis. For $n \\to \\infty$ we obtain that if (and only if) the Hypothesis is true, $\\lambda_n \\sim n(A \\log n +B)$ (with $A>0$ and $B$ explicitly given, also for the case of more general zeta or $L$-functions); whereas in the opposite case, $\\lambda_n$ has a non-tempered oscillatory form.", "revisions": [ { "version": "v2", "updated": "2006-01-25T10:01:05.000Z" } ], "analyses": { "subjects": [ "11M26", "30B40", "41A60" ], "keywords": [ "riemann hypothesis", "lis criterion", "sharpenings", "general zeta", "opposite case" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }