{ "id": "math/0506089", "version": "v2", "published": "2005-06-05T21:37:33.000Z", "updated": "2005-07-06T15:11:08.000Z", "title": "Quasi-periodic solutions of the equation v_{tt}-v_{xx}+v^3=f(v)", "authors": [ "Pietro Baldi" ], "comment": "20 pages. Corrected some misprints, added a reference, moved Proposition and Lemma 1 from Section 2 to the Appendix", "categories": [ "math.AP" ], "abstract": "We consider 1D completely resonant nonlinear wave equations of the type v_{tt}-v_{xx}=-v^3+O(v^4) with spatial periodic boundary conditions. We prove the existence of a new type of quasi-periodic small amplitude solutions with two frequencies, for more general nonlinearities. These solutions turn out to be, at the first order, the superposition of a traveling wave and a modulation of long period, depending only on time.", "revisions": [ { "version": "v2", "updated": "2005-07-06T15:11:08.000Z" } ], "analyses": { "subjects": [ "35L05", "35B15", "37K50" ], "keywords": [ "quasi-periodic solutions", "spatial periodic boundary conditions", "quasi-periodic small amplitude solutions", "resonant nonlinear wave equations", "long period" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6089B" } } }