{ "id": "math/0506067", "version": "v1", "published": "2005-06-03T15:02:45.000Z", "updated": "2005-06-03T15:02:45.000Z", "title": "Small gaps between primes or almost primes", "authors": [ "D. A. Goldston", "S. W. Graham", "J. Pintz", "C. Y. Yilidirm" ], "comment": "49 pages", "categories": [ "math.NT" ], "abstract": "Let $p_n$ denote the $n^{th}$ prime. Goldston, Pintz, and Yildirim recently proved that $ \\liminf_{n\\to \\infty} \\frac{(p_{n+1}-p_n)}{\\log p_n} =0.$ We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let $q_n$ denote the $n^{th}$ number that is a product of exactly two distinct primes. We prove that $\\liminf_{n\\to \\infty} (q_{n+1}-q_n) \\le 26.$ If an appropriate generalization of the Elliott-Halberstam Conjecture is true, then the above bound can be improved to 6.", "revisions": [ { "version": "v1", "updated": "2005-06-03T15:02:45.000Z" } ], "analyses": { "subjects": [ "11N25", "11N05", "11N36" ], "keywords": [ "small gaps", "elliott-halberstam conjecture", "distinct primes", "appropriate generalization", "prime factors" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6067G" } } }