{ "id": "math/0506018", "version": "v2", "published": "2005-06-01T13:08:38.000Z", "updated": "2005-06-11T18:08:46.000Z", "title": "From triangulated categories to cluster algebras", "authors": [ "Philippe Caldero", "Bernhard Keller" ], "comment": "31 pages, typos corrected", "categories": [ "math.RT", "math.RA" ], "abstract": "The cluster category is a triangulated category introduced for its combinatorial similarities with cluster algebras. We prove that a cluster algebra A of finite type can be realized as a Hall algebra, called the exceptional Hall algebra, of the cluster category. This realization provides a natural basis for A. We prove new results and formulate conjectures on `good basis' properties, positivity, denominator theorems and toric degenerations.", "revisions": [ { "version": "v2", "updated": "2005-06-11T18:08:46.000Z" } ], "analyses": { "subjects": [ "16G20", "18E30" ], "keywords": [ "cluster algebra", "triangulated category", "cluster category", "exceptional hall algebra", "finite type" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6018C" } } }