{ "id": "math/0505422", "version": "v2", "published": "2005-05-19T17:56:41.000Z", "updated": "2005-05-31T16:02:14.000Z", "title": "On the intersection theory of the moduli space of rank two bundles", "authors": [ "Alina Marian", "Dragos Oprea" ], "categories": [ "math.AG" ], "abstract": "We give an algebro-geometric derivation of the known intersection theory on the moduli space of stable rank 2 bundles of odd degree over a smooth curve of genus g. We lift the computation from the moduli space to a Quot scheme, where we obtain the intersections by equivariant localization with respect to a natural torus action.", "revisions": [ { "version": "v2", "updated": "2005-05-31T16:02:14.000Z" } ], "analyses": { "keywords": [ "moduli space", "intersection theory", "natural torus action", "smooth curve", "algebro-geometric derivation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5422M" } } }