{ "id": "math/0505416", "version": "v2", "published": "2005-05-19T14:00:39.000Z", "updated": "2005-11-24T15:38:20.000Z", "title": "Rational Cherednik algebras and diagonal coinvariants of G(m,p,n)", "authors": [ "Richard Vale" ], "comment": "18 pages. Main result substantially extended", "categories": [ "math.RT", "math.CO" ], "abstract": "We construct a quotient ring of the ring of diagonal coinvariants of the complex reflection group $W=G(m,p,n)$ and determine its graded character. This generalises a result of Gordon for Coxeter groups. The proof uses a study of category $\\cO$ for the rational Cherednik algebra of $W$.", "revisions": [ { "version": "v2", "updated": "2005-11-24T15:38:20.000Z" } ], "analyses": { "keywords": [ "rational cherednik algebra", "diagonal coinvariants", "complex reflection group", "coxeter groups", "graded character" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5416V" } } }