{ "id": "math/0505198", "version": "v2", "published": "2005-05-10T21:18:29.000Z", "updated": "2006-02-07T00:52:20.000Z", "title": "Freiman's Theorem in an arbitrary abelian group", "authors": [ "Ben Green", "Imre Z. Ruzsa" ], "comment": "15 pages, to appear in London Math. Society journals. Exceptionally minor cosmetic changes from the previous version", "categories": [ "math.NT", "math.CO" ], "abstract": "A famous result of Freiman describes the structure of finite sets A of integers with small doubling property. If |A + A| <= K|A| then A is contained within a multidimensional arithmetic progression of dimension d(K) and size f(K)|A|. Here we prove an analogous statement valid for subsets of an arbitrary abelian group.", "revisions": [ { "version": "v2", "updated": "2006-02-07T00:52:20.000Z" } ], "analyses": { "keywords": [ "arbitrary abelian group", "freimans theorem", "multidimensional arithmetic progression", "small doubling property", "analogous statement valid" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5198G" } } }