{ "id": "math/0505186", "version": "v3", "published": "2005-05-10T15:51:57.000Z", "updated": "2005-11-21T12:55:04.000Z", "title": "The density of rational points on non-singular hypersurfaces, II", "authors": [ "T. D. Browning", "D. R. Heath-Brown" ], "comment": "36 pages; appendix by J. Starr", "categories": [ "math.NT", "math.AG" ], "abstract": "This paper establishes the conjecture that a non-singular projective hypersurface of dimension $r$, which is not equal to a linear space, contains $O(B^{r+\\epsilon})$ rational points of height at most $B$, for any choice of $\\epsilon>0$. The implied constant in this estimate depends at most upon $\\epsilon, r$ and the degree of the hypersurface.", "revisions": [ { "version": "v3", "updated": "2005-11-21T12:55:04.000Z" } ], "analyses": { "subjects": [ "11D45", "11G35", "14G05" ], "keywords": [ "rational points", "non-singular hypersurfaces", "estimate depends", "non-singular projective hypersurface", "linear space" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5186B" } } }