{ "id": "math/0505102", "version": "v2", "published": "2005-05-06T01:13:29.000Z", "updated": "2005-08-04T08:49:38.000Z", "title": "Classification of smooth affine spherical varieties", "authors": [ "Friedrich Knop", "Bart Van Steirteghem" ], "comment": "v1: 23 pages, uses texdraw; v2: 25 pages, introduction updated, Lemma 7.2 fixed, references added, typos corrected", "journal": "Transform. Groups 11 (2006) 495-516", "doi": "10.1007/s00031-005-1116-3", "categories": [ "math.AG", "math.RT", "math.SG" ], "abstract": "Let G be a complex reductive group. A normal G-variety X is called spherical if a Borel subgroup of G has a dense orbit in X. Of particular interest are spherical varieties which are smooth and affine since they form local models for multiplicity free Hamiltonian K-manifolds, K a maximal compact subgroup of G. In this paper, we classify all smooth affine spherical varieties up to coverings, central tori, and C*-fibrations.", "revisions": [ { "version": "v2", "updated": "2005-08-04T08:49:38.000Z" } ], "analyses": { "subjects": [ "14L30" ], "keywords": [ "smooth affine spherical varieties", "classification", "multiplicity free hamiltonian k-manifolds", "form local models", "maximal compact subgroup" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5102K" } } }