{ "id": "math/0505089", "version": "v1", "published": "2005-05-05T17:22:36.000Z", "updated": "2005-05-05T17:22:36.000Z", "title": "Gaussian estimates for symmetric simple exclusion processes", "authors": [ "C. Landim" ], "categories": [ "math.PR" ], "abstract": "We prove Gaussian tail estimates for the transition probability of $n$ particles evolving as symmetric exclusion processes on $\\bb Z^d$, improving results obtained in \\cite{l}. We derive from this result a non-equilibrium Boltzmann-Gibbs principle for the symmetric simple exclusion process in dimension 1 starting from a product measure with slowly varying parameter.", "revisions": [ { "version": "v1", "updated": "2005-05-05T17:22:36.000Z" } ], "analyses": { "keywords": [ "symmetric simple exclusion processes", "gaussian estimates", "gaussian tail estimates", "symmetric exclusion processes", "non-equilibrium boltzmann-gibbs principle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5089L" } } }