{ "id": "math/0505067", "version": "v1", "published": "2005-05-04T06:24:14.000Z", "updated": "2005-05-04T06:24:14.000Z", "title": "On toric varieties which are almost set-theoretic complete intersections", "authors": [ "Margherita Barile" ], "journal": "J. Pure Appl. Algebra, 207 (2006), 109-118", "doi": "10.1016/j.jpaa.2005.09.008", "categories": [ "math.AG", "math.AC" ], "abstract": "We describe a class of affine toric varieties $V$ that are set-theoretically minimally defined by codim $V+1$ binomial equations over fields of any characteristic.", "revisions": [ { "version": "v1", "updated": "2005-05-04T06:24:14.000Z" } ], "analyses": { "subjects": [ "14M25", "14M10", "19F27" ], "keywords": [ "set-theoretic complete intersections", "affine toric varieties", "binomial equations", "characteristic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5067B" } } }