{ "id": "math/0504595", "version": "v2", "published": "2005-04-29T17:14:57.000Z", "updated": "2005-12-09T12:15:20.000Z", "title": "Pfaffian Lines and Vector Bundles on Fano Threefolds of Genus 8", "authors": [ "Atanas Iliev", "Laurent Manivel" ], "comment": "25 pages, LaTeX; to appear in J.Alg.Geom", "categories": [ "math.AG" ], "abstract": "Let X be a general complex Fano threefold of genus 8. We prove that the moduli space of rank two semistable sheaves on X with Chern numbers c_1=1, c_2=6 and c_3=0 is isomorphic to the Fano surface F(X) of conics on X. Inside F(X), the non-locally free sheaves are parameterized by a smooth curve of genus 26 isomorphic to the base of the family of lines on X.", "revisions": [ { "version": "v2", "updated": "2005-12-09T12:15:20.000Z" } ], "analyses": { "subjects": [ "14J30", "14F05" ], "keywords": [ "vector bundles", "pfaffian lines", "general complex fano threefold", "moduli space", "isomorphic" ], "note": { "typesetting": "LaTeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4595I" } } }