{ "id": "math/0504543", "version": "v1", "published": "2005-04-26T21:30:27.000Z", "updated": "2005-04-26T21:30:27.000Z", "title": "Noncommutative Deformations of Type A Kleinian Singularities and Hilbert Schemes", "authors": [ "Ian M. Musson" ], "categories": [ "math.RT" ], "abstract": "Let $H_{\\mathbf{k}}$ be a symplectic reflection algebra corresponding to a cyclic subgroup $\\Gamma \\subseteq SL_2 \\C$ of order $n$ and $U_{\\mathbf{k}} = eH_{\\mathbf{k}} e$ the spherical subalgebra of $H_{\\mathbf{k}}$. We show that for suitable ${\\mathbf{k}}$ there is a filtered $\\Z^{n-1}$-algebra $R$ such that (1) there is an equivalence of categories $R-\\mathrm{qgr} \\simeq U_{\\bf k}$-mod, (2) there is an equivalence of categories $gr R-\\mathrm{qgr} \\simeq \\ttt{Coh}(Hilb_\\Gamma \\mathbb{C}^2)$. Here $ \\ttt{Coh}(Hilb_\\Gamma \\mathbb{C}^2)$ is the category of coherent sheaves on the $\\Gamma$-Hilbert scheme. and for a graded algebra $\\mathcal{R},$ we write $ \\mathcal{R}-\\mathrm{qgr}$ for the quotient category of finitely generated graded $\\mathcal{R}$-modules modulo torsion.", "revisions": [ { "version": "v1", "updated": "2005-04-26T21:30:27.000Z" } ], "analyses": { "keywords": [ "hilbert scheme", "kleinian singularities", "noncommutative deformations", "modules modulo torsion", "equivalence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4543M" } } }