{ "id": "math/0504422", "version": "v3", "published": "2005-04-21T03:55:31.000Z", "updated": "2005-08-29T21:54:03.000Z", "title": "On the complex structure of Kähler manifolds with nonnegative curvature", "authors": [ "Albert Chau", "Luen-Fai Tam" ], "comment": ":37 pages, references rearranged, typos corrected", "categories": [ "math.DG", "math.AP" ], "abstract": "We study the asymptotic behavior of the K\\\"ahler-Ricci flow on K\\\"ahler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact K\\\"ahler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space $\\C^n$. We also show that the volume growth condition can be removed if we assume $(M, g)$ has average quadratic scalar curvature decay (see Theorem 2.1) and positive curvature operator.", "revisions": [ { "version": "v3", "updated": "2005-08-29T21:54:03.000Z" } ], "analyses": { "subjects": [ "53C55", "35K90" ], "keywords": [ "complex structure", "kähler manifolds", "nonnegative curvature", "bounded holomorphic bisectional curvature", "average quadratic scalar curvature decay" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4422C" } } }