{ "id": "math/0504362", "version": "v1", "published": "2005-04-18T14:46:41.000Z", "updated": "2005-04-18T14:46:41.000Z", "title": "Abelian subalgebras of von Neumann algebras from flat tori in locally symmetric spaces", "authors": [ "Guyan Robertson" ], "journal": "J. Funct. Anal., 230 (2006), 419-431", "categories": [ "math.OA", "math.DG" ], "abstract": "Consider a compact locally symmetric space $M$ of rank $r$, with fundamental group $\\Gamma$. The von Neumann algebra $\\vn(\\Gamma)$ is the convolution algebra of functions $f\\in\\ell_2(\\Gamma)$ which act by left convolution on $\\ell_2(\\Gamma)$. Let $T^r$ be a totally geodesic flat torus of dimension $r$ in $M$ and let $\\Gamma_0\\cong\\bb Z^r$ be the image of the fundamental group of $T^r$ in $\\Gamma$. Then $\\vn(\\Gamma_0)$ is a maximal abelian $\\star$-subalgebra of $\\vn(\\Gamma)$ and its unitary normalizer is as small as possible. If $M$ has constant negative curvature then the Puk\\'anszky invariant of $\\vn(\\Gamma_0)$ is $\\infty$.", "revisions": [ { "version": "v1", "updated": "2005-04-18T14:46:41.000Z" } ], "analyses": { "subjects": [ "22D25", "22E40" ], "keywords": [ "von neumann algebra", "abelian subalgebras", "fundamental group", "totally geodesic flat torus", "compact locally symmetric space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4362R" } } }