{ "id": "math/0504317", "version": "v2", "published": "2005-04-15T11:22:47.000Z", "updated": "2005-07-28T09:41:00.000Z", "title": "Remarks on the Extremal Functions for the Moser-Trudinger Inequalities", "authors": [ "Yuxiang Li" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "We will show in this paper that if $\\lambda$ is very close to 1, then $$I(M,\\lambda,m)= \\sup_{u\\in H^{1,n}_0(M) ,\\int_M|\\nabla u|^ndV=1}\\int_\\Omega (e^{\\alpha_n |u|^\\frac{n}{n-1}}-\\lambda\\sum\\limits_{k=1}^m\\frac{|\\alpha_nu^\\frac{n}{n-1}|^k} {k!})dV,$$ can be attained, where $M$ is a compact manifold with boundary. This result gives a counter example to the conjecture of de Figueiredo, do \\'o, and Ruf in their paper titled \"On a inequality by N.Trudinger and J.Moser and related elliptic equations\" (Comm. Pure. Appl. Math.,{\\bf 55}:135-152, 2002).", "revisions": [ { "version": "v2", "updated": "2005-07-28T09:41:00.000Z" } ], "analyses": { "subjects": [ "58J05" ], "keywords": [ "inequality", "moser-trudinger inequalities", "extremal functions", "counter example", "related elliptic equations" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4317L" } } }