{ "id": "math/0504294", "version": "v1", "published": "2005-04-14T13:44:34.000Z", "updated": "2005-04-14T13:44:34.000Z", "title": "On contractive projections in Hardy spaces", "authors": [ "Florence Lancien", "Beata Randrianantoanina", "Eric Ricard" ], "comment": "9 pages, to appear in Studia Mathematica", "categories": [ "math.FA", "math.CV" ], "abstract": "We prove a conjecture of Wojtaszczyk that for $1\\leq p<\\infty$, $p\\neq 2$, $H_p(\\mathbbT)$ does not admit any norm one projections with dimension of the range finite and bigger than 1. This implies in particular that for $1\\leq p<\\infty$, $p\\ne 2$, $H_p$ does not admit a Schauder basis with constant one.", "revisions": [ { "version": "v1", "updated": "2005-04-14T13:44:34.000Z" } ], "analyses": { "keywords": [ "hardy spaces", "contractive projections", "range finite", "schauder basis" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4294L" } } }