{ "id": "math/0504207", "version": "v2", "published": "2005-04-11T00:27:25.000Z", "updated": "2008-01-08T23:30:50.000Z", "title": "Quasi-isometries of rank one S-arithmetic lattices", "authors": [ "Kevin Wortman" ], "comment": "21 pages", "categories": [ "math.GR", "math.GT" ], "abstract": "We complete the quasi-isometric classification of irreducible lattices in semisimple Lie groups over nondiscrete locally compact fields of characteristic zero by showing that any quasi-isometry of a rank one S-arithmetic lattice in a semisimple Lie group over nondiscrete locally compact fields of characteristic zero is a finite distance in the sup-norm from a commensurator.", "revisions": [ { "version": "v2", "updated": "2008-01-08T23:30:50.000Z" } ], "analyses": { "subjects": [ "20F65", "20G30", "22E40" ], "keywords": [ "s-arithmetic lattice", "nondiscrete locally compact fields", "semisimple lie group", "quasi-isometry", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4207W" } } }