{ "id": "math/0504196", "version": "v3", "published": "2005-04-10T16:58:30.000Z", "updated": "2008-07-08T01:33:42.000Z", "title": "Model theory without choice: Categoricity", "authors": [ "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "We prove Los conjecture = Morley theorem in ZF, with the same characterization (of first order countable theories categorical in aleph_alpha for some (equivalently for every) ordinal alpha>0. Another central result here is, in this context: the number of models of a countable first order T of cardinality aleph_alpha is either >=|alpha| for every aleph_\\alpha or it has a small upper bound (close to beth_2).", "revisions": [ { "version": "v3", "updated": "2008-07-08T01:33:42.000Z" } ], "analyses": { "keywords": [ "model theory", "categoricity", "small upper bound", "morley theorem", "los conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4196S" } } }