{ "id": "math/0504183", "version": "v1", "published": "2005-04-09T12:21:36.000Z", "updated": "2005-04-09T12:21:36.000Z", "title": "On sufficient conditions for the total positivity and for the multiple positivity of matrices", "authors": [ "Olga M. Katkova", "Anna M. Vishnyakova" ], "comment": "15 pages", "categories": [ "math.RA" ], "abstract": "The following theorem is proved: Suppose $M = (a_{i,j})$ be a $k \\times k$ matrix with positive entries and $a_{i,j}a_{i+1,j+1} > 4\\cos ^2 \\frac{\\pi}{k+1} a_{i,j+1}a_{i+1,j} \\quad (1 \\leq i \\leq k-1, 1 \\leq j \\leq k-1).$ Then $\\det M > 0 .$ The constant $4\\cos ^2 \\frac{\\pi}{k+1}$ in this Theorem is sharp. A few other results concerning totally positive and multiply positive matrices are obtained. Keywords: Multiply positive matrix; Totally positive matrix; Strictly totally positive matrix; Toeplitz matrix; Hankel matrix; P\\'olya frequency sequence.", "revisions": [ { "version": "v1", "updated": "2005-04-09T12:21:36.000Z" } ], "analyses": { "subjects": [ "15A48", "15A57", "15A15" ], "keywords": [ "multiple positivity", "sufficient conditions", "total positivity", "totally positive matrix", "polya frequency sequence" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4183K" } } }