{ "id": "math/0504086", "version": "v2", "published": "2005-04-05T20:48:06.000Z", "updated": "2006-03-13T03:19:05.000Z", "title": "Higher Abel-Jacobi maps for 0-cycles", "authors": [ "Matt Kerr" ], "comment": "58 pages, 1 figure; new section 16", "categories": [ "math.AG", "math.DG" ], "abstract": "Starting from the candidate Bloch-Beilinson filtration on Chow groups of 0-cycles constructed by J. Lewis, we develop and describe geometrically a series of Hodge-theoretic invariants defined on the graded pieces. Explicit formulas (in terms of currents and membrane integrals) are given for certain quotients of the invariants, with applications to 0-cycles on products of curves.", "revisions": [ { "version": "v2", "updated": "2006-03-13T03:19:05.000Z" } ], "analyses": { "subjects": [ "14C25", "14C30", "14C35", "19D45" ], "keywords": [ "higher abel-jacobi maps", "candidate bloch-beilinson filtration", "chow groups", "membrane integrals", "explicit formulas" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4086K" } } }