{ "id": "math/0504071", "version": "v1", "published": "2005-04-05T12:44:15.000Z", "updated": "2005-04-05T12:44:15.000Z", "title": "Reproducing kernel Hilbert spaces and Mercer theorem", "authors": [ "Claudio Carmeli", "Ernesto De Vito", "Alessandro Toigo" ], "comment": "30 pages, Latex2e", "categories": [ "math.FA", "math-ph", "math.MP" ], "abstract": "We characterize the reproducing kernel Hilbert spaces whose elements are $p$-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for $p=2$ we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel.", "revisions": [ { "version": "v1", "updated": "2005-04-05T12:44:15.000Z" } ], "analyses": { "keywords": [ "reproducing kernel hilbert spaces", "mercer theorem", "integral operator", "spectral decomposition", "complete description" ], "note": { "typesetting": "LaTeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4071C" } } }