{ "id": "math/0504016", "version": "v1", "published": "2005-04-01T13:32:36.000Z", "updated": "2005-04-01T13:32:36.000Z", "title": "Manin's conjecture for a certain singular cubic surface", "authors": [ "Ulrich Derenthal" ], "comment": "18 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove Manin's conjecture for a singular cubic surface S with a singularity of type E6. If U is the open subset of S obtained by deleting the unique line from S, then the number of rational points in U with anticanonical height bounded by B behaves asymptotically as cB(log B)^6, where the constant c agrees with the one conjectured by Peyre.", "revisions": [ { "version": "v1", "updated": "2005-04-01T13:32:36.000Z" } ], "analyses": { "subjects": [ "11G35", "14G05", "14J45" ], "keywords": [ "singular cubic surface", "manins conjecture", "open subset", "type e6", "unique line" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4016D" } } }