{ "id": "math/0503734", "version": "v1", "published": "2005-03-31T12:53:44.000Z", "updated": "2005-03-31T12:53:44.000Z", "title": "Stabilizers and orbits of circle-valued smooth functions", "authors": [ "Sergey Maksymenko" ], "comment": "11 pages, 1 figure. This paper is an extension of author's preprint http://xxx.lanl.gov/math.FA/0411612 to circle-valued functions", "categories": [ "math.FA", "math.AT", "math.DS", "math.GT" ], "abstract": "Let $M$ be a smooth compact manifold and $P$ be either $R^1$ or $S^1$. There is a natural action of the groups $Diff(M)$ and $Diff(M) \\times Diff(P)$ on the space of smooth mappings $C^{\\infty}(M,P)$. For $f\\in C^{\\infty}(M,P)$ let $S_f$, $S_{MP}$, $O_f$, and $O_{MP}$ be the stabilizers and orbits of $f$ under these actions. Recently, the author proved that under mild conditions on $f\\in C^{\\infty}(M,R^1)$ the corresponding stabilizers and orbits are homotopy equivalent: $S_{MR} \\sim S_{M}$ and $O_{MR} \\sim O_M$. These results are extended here to the actions on $C^{\\infty}(M,S^1)$. It is proved that under the similar conditions (that are rather typical) we have that $S_{MS}\\sim S_M$ and $O_{MS} \\sim O_M \\times S^1$.", "revisions": [ { "version": "v1", "updated": "2005-03-31T12:53:44.000Z" } ], "analyses": { "subjects": [ "58K05", "14H40" ], "keywords": [ "circle-valued smooth functions", "smooth compact manifold", "similar conditions", "homotopy equivalent", "natural action" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3734M" } } }