{ "id": "math/0503414", "version": "v2", "published": "2005-03-21T12:04:23.000Z", "updated": "2006-08-10T12:26:28.000Z", "title": "Topological Quantum Field Theory and the Nielsen-Thurston classification of M(0,4)", "authors": [ "Jorgen Ellegaard Andersen", "Gregor Masbaum", "Kenji Ueno" ], "comment": "13 pages, minor modifications, to be published in Math. Proc. Camb. Phil. Soc", "categories": [ "math.GT", "math.QA" ], "abstract": "We show that the Nielsen-Thurston classification of mapping classes of the sphere with four marked points is determined by the quantum SU(n)-representations, for any fixed integer $n \\geq 2$. In the Pseudo-Anosov case we also show that the stretching factor is a limit of eigenvalues of (non-unitary) SU(2)-TQFT representation matrices. It follows that at big enough levels, Pseudo-Anosov mapping classes are represented by matrices of infinite order.", "revisions": [ { "version": "v2", "updated": "2006-08-10T12:26:28.000Z" } ], "analyses": { "subjects": [ "57R56", "57M50", "37E30" ], "keywords": [ "topological quantum field theory", "nielsen-thurston classification", "infinite order", "pseudo-anosov mapping classes", "quantum su" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "inspire": 679080, "adsabs": "2005math......3414E" } } }