{ "id": "math/0503378", "version": "v1", "published": "2005-03-18T12:35:16.000Z", "updated": "2005-03-18T12:35:16.000Z", "title": "A Mordell-Weil theorem for abelian varieties over fields generated by torsion points", "authors": [ "Michael Larsen" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "If A is an abelian variety over a number field K, and L is a (possibly infinite) extension of K generated by torsion points of A, then the quotient of A(L) by its torsion subgroup is a free abelian group.", "revisions": [ { "version": "v1", "updated": "2005-03-18T12:35:16.000Z" } ], "analyses": { "subjects": [ "11G10", "11R34" ], "keywords": [ "torsion points", "abelian variety", "mordell-weil theorem", "free abelian group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3378L" } } }