{ "id": "math/0503367", "version": "v2", "published": "2005-03-17T18:29:18.000Z", "updated": "2005-04-05T19:27:34.000Z", "title": "Sets of k-recurrence but not (k+1)-recurrence", "authors": [ "N. Frantzikinakis", "E. Lesigne", "M. Wierdl" ], "comment": "8 pages", "categories": [ "math.DS", "math.CO" ], "abstract": "For every $k\\in \\mathbb{N}$, we produce a set of integers which is $k$-recurrent but not $(k+1)$-recurrent. This extends a result of Furstenberg who produced a 1-recurrent set which is not 2-recurrent. We discuss a similar result for convergence of multiple ergodic averages. Finally, we also point out a combinatorial consequence related to Szemer\\' edi's theorem.", "revisions": [ { "version": "v2", "updated": "2005-04-05T19:27:34.000Z" } ], "analyses": { "subjects": [ "37A45", "28D05" ], "keywords": [ "k-recurrence", "multiple ergodic averages", "edis theorem", "similar result", "furstenberg" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3367F" } } }