{ "id": "math/0503346", "version": "v1", "published": "2005-03-17T03:58:12.000Z", "updated": "2005-03-17T03:58:12.000Z", "title": "Non-genericity of variations of Hodge structure for hypersurfaces of high degree", "authors": [ "Emmanuel Allaud" ], "comment": "Accepted for publication by the Duke Mathematical Journal", "categories": [ "math.AG" ], "abstract": "In this paper we are interested in proving that the infinitesimal variations of Hodge structure of hypersurfaces of high enough degree lie in a proper subvariety of the variety of all infinitesimal variations. This is proved using a space of symmetrizers as defined by Donagi, to identify a geometric structure carried by the variety of all infinitesimal variations of Hodge structure.", "revisions": [ { "version": "v1", "updated": "2005-03-17T03:58:12.000Z" } ], "analyses": { "subjects": [ "14D07" ], "keywords": [ "hodge structure", "high degree", "infinitesimal variations", "hypersurfaces", "non-genericity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3346A" } } }