{ "id": "math/0503336", "version": "v1", "published": "2005-03-16T16:42:06.000Z", "updated": "2005-03-16T16:42:06.000Z", "title": "Quadratic forms for a 1-form on an isolated complete intersection singularity", "authors": [ "Wolfgang Ebeling", "Sabir M. Gusein-Zade" ], "categories": [ "math.AG", "math.CV" ], "abstract": "We consider a holomorphic 1-form $\\omega$ with an isolated zero on an isolated complete intersection singularity $(V,0)$. We construct quadratic forms on an algebra of functions and on a module of differential forms associated to the pair $(V,\\omega)$. They generalize the Eisenbud-Levine-Khimshiashvili quadratic form defined for a smooth $V$.", "revisions": [ { "version": "v1", "updated": "2005-03-16T16:42:06.000Z" } ], "analyses": { "subjects": [ "14B05", "32S10", "58A10" ], "keywords": [ "isolated complete intersection singularity", "construct quadratic forms", "eisenbud-levine-khimshiashvili quadratic form", "differential forms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3336E" } } }