{ "id": "math/0503204", "version": "v1", "published": "2005-03-10T19:48:32.000Z", "updated": "2005-03-10T19:48:32.000Z", "title": "Symmetric Groups and Expanders", "authors": [ "Martin Kassabov" ], "comment": "10 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "We construct an explicit generating sets $F_n$ and $\\tilde F_n$ of the alternating and the symmetric groups, which make the Cayley graphs $C(Alt(n), F_n)$ and $C(Sym(n), \\tilde F_n)$ a family of bounded degree expanders for all sufficiently large $n$. These expanders have many applications in the theory of random walks on groups and other areas of mathematics.", "revisions": [ { "version": "v1", "updated": "2005-03-10T19:48:32.000Z" } ], "analyses": { "subjects": [ "20B30", "05C25", "05E15", "20C30", "20F69", "60C05", "68R05", "68R10" ], "keywords": [ "symmetric groups", "explicit generating sets", "cayley graphs", "bounded degree expanders", "random walks" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3204K" } } }