{ "id": "math/0503171", "version": "v1", "published": "2005-03-09T05:50:24.000Z", "updated": "2005-03-09T05:50:24.000Z", "title": "Existence and blow up of small-amplitude nonlinear waves with a sign-changing potential", "authors": [ "Paschalis Karageorgis" ], "comment": "34 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We study the nonlinear wave equation with a sign-changing potential in any space dimension. If the potential is small and rapidly decaying, then the existence of small-amplitude solutions is driven by the nonlinear term. If the potential induces growth in the linearized problem, however, solutions that start out small may blow-up in finite time.", "revisions": [ { "version": "v1", "updated": "2005-03-09T05:50:24.000Z" } ], "analyses": { "subjects": [ "35C15", "35L05", "35L15" ], "keywords": [ "small-amplitude nonlinear waves", "sign-changing potential", "nonlinear wave equation", "potential induces growth", "finite time" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2005.02.020", "journal": "Journal of Differential Equations", "year": 2005, "volume": 219, "number": 2, "pages": 259 }, "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005JDE...219..259K" } } }