{ "id": "math/0503164", "version": "v2", "published": "2005-03-08T20:32:13.000Z", "updated": "2005-03-16T14:30:12.000Z", "title": "On a symmetric congruence and its applications", "authors": [ "M. Z. Garaev", "A. A. Karatsuba" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "For a large integer $m,$ we obtain an asymptotic formula for the number of solutions of a certain congruence modulo $m$ with four variables, where the variables belong to special sets of residue classes modulo $m.$ This formula are applied to obtain new information on the exceptional set of the multiplication table problem in a residue ring modulo $m$ and a new bound for a double trigonometric sum with an exponential function.", "revisions": [ { "version": "v2", "updated": "2005-03-16T14:30:12.000Z" } ], "analyses": { "subjects": [ "11L07" ], "keywords": [ "symmetric congruence", "applications", "residue classes modulo", "exponential function", "congruence modulo" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3164G" } } }