{ "id": "math/0503118", "version": "v1", "published": "2005-03-07T06:05:53.000Z", "updated": "2005-03-07T06:05:53.000Z", "title": "Random walk on the incipient infinite cluster on trees", "authors": [ "Martin T. Barlow", "Takashi Kumagai" ], "comment": "30 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Let ${\\cal G}$ be the incipient infinite cluster (IIC) for percolation on a homogeneous tree of degree $n_0+1$. We obtain estimates for the transition density of the continuous time simple random walk $Y$ on ${\\cal G}$; the process satisfies anomalous diffusion and has spectral dimension 4/3.", "revisions": [ { "version": "v1", "updated": "2005-03-07T06:05:53.000Z" } ], "analyses": { "subjects": [ "60K37", "60J80", "60J35" ], "keywords": [ "incipient infinite cluster", "continuous time simple random walk", "process satisfies anomalous diffusion", "transition density", "spectral dimension" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3118B" } } }