{ "id": "math/0503112", "version": "v1", "published": "2005-03-06T12:10:33.000Z", "updated": "2005-03-06T12:10:33.000Z", "title": "A Foata bijection for the alternating group and for q analogues", "authors": [ "Dan Bernstein", "Amitai Regev" ], "comment": "16 pages", "journal": "S\\'eminaire Lotharingien Combin. 53 (2005), Article B53b, 16 pp", "categories": [ "math.CO" ], "abstract": "The Foata bijection $\\Phi : S_n \\to S_n$ is extended to the bijections $\\Psi : A_{n+1} \\to A_{n+1}$ and $\\Psi_q : S_{n+q-1} \\to S_{n+q-1}$, where S_m, A_m are the symmetric and the alternating groups. These bijections imply bijective proofs for recent equidistribution theorems, by Regev and Roichman, for A_{n+1} and for S_{n+q-1}.", "revisions": [ { "version": "v1", "updated": "2005-03-06T12:10:33.000Z" } ], "analyses": { "subjects": [ "05A15", "05A19" ], "keywords": [ "foata bijection", "alternating group", "equidistribution theorems", "bijections imply bijective proofs" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3112B" } } }