{ "id": "math/0503042", "version": "v2", "published": "2005-03-02T15:16:44.000Z", "updated": "2007-02-08T08:57:42.000Z", "title": "Equilibrium Kawasaki dynamics of continuous particle systems", "authors": [ "Yu. G. Kondratiev", "E. Lytvynov", "M. Röckner" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We construct a new equilibrium dynamics of infinite particle systems in a Riemannian manifold $X$. This dynamics is an analog of the Kawasaki dynamics of lattice spin systems. The Kawasaki dynamics now is a process where interacting particles randomly hop over $X$. We establish conditions on the {\\it a priori} explicitly given symmetrizing measure and the generator of this dynamics, under which a corresponding conservative Markov processes exists. We also outline two types of scaling limit of the equilibrium Kawasaki dynamics: one leading to an equilibrium Glauber dynamics in continuum (a birth-and-death process), and the other leading to a diffusion dynamics of interacting particles (in particular, the gradient stochastic dynamics).", "revisions": [ { "version": "v2", "updated": "2007-02-08T08:57:42.000Z" } ], "analyses": { "subjects": [ "60K35", "60J75", "60J80", "82C21", "82C22" ], "keywords": [ "equilibrium kawasaki dynamics", "continuous particle systems", "gradient stochastic dynamics", "infinite particle systems", "equilibrium glauber dynamics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3042K" } } }