{ "id": "math/0502504", "version": "v1", "published": "2005-02-23T23:37:48.000Z", "updated": "2005-02-23T23:37:48.000Z", "title": "On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia", "authors": [ "M. H. Albert", "M. Elder", "A. Rechnitzer", "P. Westcott", "M. Zabrocki" ], "comment": "Submitted to Advances in Applied Mathematics", "journal": "Advances in Applied Mathematics 36(2) Special Issue on Pattern Avoiding Permutations (2006) pages 96-105", "doi": "10.1016/j.aam.2005.05.007", "categories": [ "math.CO" ], "abstract": "We construct a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the class of 4231-avoiding permutations is bounded below by 9.35. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley limit of a class of permutations avoiding a single permutation of length k cannot exceed (k-1)^2.", "revisions": [ { "version": "v1", "updated": "2005-02-23T23:37:48.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15" ], "keywords": [ "wilf-stanley limit", "conjecture", "single permutation", "finite automata", "permutations avoiding" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2504A" } } }