{ "id": "math/0502311", "version": "v1", "published": "2005-02-15T15:59:05.000Z", "updated": "2005-02-15T15:59:05.000Z", "title": "Rank of the fundamental group of a component of a function space", "authors": [ "Gregory Lupton", "Samuel Bruce Smith" ], "categories": [ "math.AT" ], "abstract": "We compute the rank of the fundamental group of an arbitrary connected component of the space map(X, Y) for X and Y nilpotent CW complexes with X finite. For the general component corresponding to a homotopy class f : X --> Y, we give a formula directly computable from the Sullivan model for f. For the component of the constant map, our formula expresses the rank in terms of classical invariants of X and Y. Among other applications and calculations, we obtain the following: Let G be a compact simple Lie group with maximal torus T^n. Then the fundamental group of map(S^2, G/T^n; f) is a finite group if and only if f: S^2 --> G/T^n is essential.", "revisions": [ { "version": "v1", "updated": "2005-02-15T15:59:05.000Z" } ], "analyses": { "subjects": [ "55Q52", "55P15" ], "keywords": [ "fundamental group", "function space", "compact simple lie group", "nilpotent cw complexes", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2311L" } } }