{ "id": "math/0502240", "version": "v2", "published": "2005-02-11T15:19:57.000Z", "updated": "2006-08-09T14:25:17.000Z", "title": "Syzygies, multigraded regularity and toric varieties", "authors": [ "Milena Hering", "Hal Schenck", "Gregory G. Smith" ], "comment": "improved exposition and corrected typos", "journal": "Compositio Mathematica 142 (2006) 1499-1506", "doi": "10.1112/S0010437X0600251X", "categories": [ "math.AG", "math.AC" ], "abstract": "Using multigraded Castelnuovo-Mumford regularity, we study the equations defining a projective embedding of a variety X. Given globally generated line bundles B_1, ..., B_k on X and integers m_1, ..., m_k, consider the line bundle L := B_1^m_1 \\otimes ... \\otimes B_k^m_k. We give conditions on the m_i which guarantee that the ideal of X in P(H^0(X,L)) is generated by quadrics and the first p syzygies are linear. This yields new results on the syzygies of toric varieties and the normality of polytopes.", "revisions": [ { "version": "v2", "updated": "2006-08-09T14:25:17.000Z" } ], "analyses": { "subjects": [ "14M25", "13D02", "14C20", "52B20" ], "keywords": [ "toric varieties", "multigraded regularity", "multigraded castelnuovo-mumford regularity", "globally generated line bundles", "conditions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2240H" } } }