{ "id": "math/0502222", "version": "v3", "published": "2005-02-10T21:58:39.000Z", "updated": "2005-05-09T03:33:56.000Z", "title": "Surjectivity of $p$-adic regulator on $K_2$ of Tate curves", "authors": [ "Masanori Asakura" ], "doi": "10.1007/s00222-005-0494-4", "categories": [ "math.NT", "math.AG" ], "abstract": "I prove the surjectivity of the $p$-adic regulator from Quillen's $K_2$ of Tate curve to the $p$-adic etale cohomology group when the base field is contained in a cyclotomic extension of $Q_p$. This implies the finiteness of torsion part of $K_1$ of Tate curves thanks to Suslin's exact sequence.", "revisions": [ { "version": "v3", "updated": "2005-05-09T03:33:56.000Z" } ], "analyses": { "subjects": [ "19F27" ], "keywords": [ "adic regulator", "surjectivity", "adic etale cohomology group", "suslins exact sequence", "tate curves thanks" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2006, "month": "Feb", "volume": 165, "number": 2, "pages": 267 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006InMat.165..267A" } } }