{ "id": "math/0502221", "version": "v1", "published": "2005-02-11T05:43:57.000Z", "updated": "2005-02-11T05:43:57.000Z", "title": "Diameters of Cayley graphs of SL_n(Z/kZ)", "authors": [ "M. Kassabov", "T. R. Riley" ], "comment": "11 pages, no figures", "categories": [ "math.GR", "math.CO" ], "abstract": "We show that for integers k > 1 and n > 2, the diameter of the Cayley graph of SL_n(Z/kZ) associated to a standard two-element generating set, is at most a constant times n^2 ln k. This answers a question of A. Lubotzky concerning SL_n(F_p) and is unexpected because these Cayley graphs do not form an expander family. Our proof amounts to a quick algorithm for finding short words representing elements of SL_n(Z/kZ).", "revisions": [ { "version": "v1", "updated": "2005-02-11T05:43:57.000Z" } ], "analyses": { "subjects": [ "20F05", "05C25", "05C35", "20D06" ], "keywords": [ "cayley graph", "standard two-element generating set", "finding short words representing elements", "constant times", "quick algorithm" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2221K" } } }