{ "id": "math/0502187", "version": "v4", "published": "2005-02-09T20:21:42.000Z", "updated": "2007-08-05T00:00:37.000Z", "title": "Congruences for sums of binomial coefficients", "authors": [ "Zhi-Wei Sun", "Roberto Tauraso" ], "journal": "J. Number Theory 126(2007), no.2, 287-296", "categories": [ "math.NT", "math.CO" ], "abstract": "Let q>1 and m>0 be relatively prime integers. We find an explicit period $\\nu_m(q)$ such that for any integers n>0 and r we have $[n+\\nu_m(q),r]_m(a)=[n,r]_m(a) (mod q)$ whenever a is an integer with $\\gcd(1-(-a)^m,q)=1$, or a=-1 (mod q), or a=1 (mod q) and 2|m, where $[n,r]_m(a)=\\sum_{k=r(mod m)}\\binom{n}{k}a^k$. This is a further extension of a congruence of Glaisher.", "revisions": [ { "version": "v4", "updated": "2007-08-05T00:00:37.000Z" } ], "analyses": { "subjects": [ "11B65", "05A10", "11A07" ], "keywords": [ "binomial coefficients", "congruence", "relatively prime integers", "explicit period" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2187S" } } }