{ "id": "math/0502138", "version": "v2", "published": "2005-02-07T17:16:21.000Z", "updated": "2005-02-08T13:14:00.000Z", "title": "Characterizing Jacobians via flexes of the Kummer variety", "authors": [ "E. Arbarello", "G. Marini", "I. Krichever" ], "comment": "14", "categories": [ "math.AG" ], "abstract": "Given an abelian variety $X$ and a point $a\\in X$ we denote by $$ the closure of the subgroup of $X$ generated by $a$. Let $N=2^g-1$. We denote by $\\kappa: X\\to \\kappa(X)\\subset\\mathbb P^N$ the map from $X$ to its Kummer variety. We prove that an indecomposable abelian variety $X$ is the Jacobian of a curve if and only if there exists a point $a=2b\\in X\\setminus\\{0\\}$ such that $$ is irreducible and $\\kappa(b)$ is a flex of $\\kappa(X)$.", "revisions": [ { "version": "v2", "updated": "2005-02-08T13:14:00.000Z" } ], "analyses": { "keywords": [ "kummer variety", "characterizing jacobians", "indecomposable abelian variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2138A" } } }