{
"id": "math/0502138",
"version": "v2",
"published": "2005-02-07T17:16:21.000Z",
"updated": "2005-02-08T13:14:00.000Z",
"title": "Characterizing Jacobians via flexes of the Kummer variety",
"authors": [
"E. Arbarello",
"G. Marini",
"I. Krichever"
],
"comment": "14",
"categories": [
"math.AG"
],
"abstract": "Given an abelian variety $X$ and a point $a\\in X$ we denote by $$ the closure of the subgroup of $X$ generated by $a$. Let $N=2^g-1$. We denote by $\\kappa: X\\to \\kappa(X)\\subset\\mathbb P^N$ the map from $X$ to its Kummer variety. We prove that an indecomposable abelian variety $X$ is the Jacobian of a curve if and only if there exists a point $a=2b\\in X\\setminus\\{0\\}$ such that $$ is irreducible and $\\kappa(b)$ is a flex of $\\kappa(X)$.",
"revisions": [
{
"version": "v2",
"updated": "2005-02-08T13:14:00.000Z"
}
],
"analyses": {
"keywords": [
"kummer variety",
"characterizing jacobians",
"indecomposable abelian variety"
],
"note": {
"typesetting": "TeX",
"pages": 0,
"language": "en",
"license": "arXiv",
"status": "editable",
"adsabs": "2005math......2138A"
}
}
}