{ "id": "math/0502116", "version": "v1", "published": "2005-02-06T16:30:32.000Z", "updated": "2005-02-06T16:30:32.000Z", "title": "ACC for log canonical thresholds and termination of log flips", "authors": [ "Caucher Birkar" ], "comment": "6 pages", "categories": [ "math.AG" ], "abstract": "We prove that the ascending chain condition (ACC) for log canonical (lc) thresholds in dimension $d$ and Special Termination in dimension $d$ imply the termination of any sequence of log flips starting with a $d$-dimensional lc pair of nonnegative Kodaira dimension. In particular, in characteristic zero, the latter termination in dimension 4 follows from Alexeev-Borisov's conjecture in dimension 3.", "revisions": [ { "version": "v1", "updated": "2005-02-06T16:30:32.000Z" } ], "analyses": { "keywords": [ "log canonical thresholds", "log flips", "dimensional lc pair", "characteristic zero", "special termination" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2116B" } } }