{ "id": "math/0502104", "version": "v1", "published": "2005-02-05T01:44:57.000Z", "updated": "2005-02-05T01:44:57.000Z", "title": "On the local Smoothness of Solutions of the Navier-Stokes Equations", "authors": [ "Hongjie Dong", "Dapeng Du" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We consider the Cauchy problem for incompressible Navier-Stokes equations $u_t+u\\nabla_xu-\\Delta u+\\nabla p=0, div u=0 in R^d \\times R^+$ with initial data $a\\in L^d(R^d)$, and study in some detail the smoothing effect of the equation. We prove that for $T<\\infty$ and for any positive integers $n$ and $m$ we have $t^{m+n/2}D^m_tD^{n}_x u\\in L^{d+2}(R^d\\times (0,T))$, as long as the $\\|u\\|_{L^{d+2}_{x,t}(R^d\\times (0,T))}$ stays finite.", "revisions": [ { "version": "v1", "updated": "2005-02-05T01:44:57.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "76D05" ], "keywords": [ "local smoothness", "cauchy problem", "initial data", "stays finite", "incompressible navier-stokes equations" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2104D" } } }