{ "id": "math/0502057", "version": "v2", "published": "2005-02-02T20:52:22.000Z", "updated": "2005-02-02T21:02:41.000Z", "title": "A Sharp Inequality for Conditional Distribution of the First Exit Time of Brownian Motion", "authors": [ "Majid Hosseini" ], "comment": "12 pages", "categories": [ "math.PR" ], "abstract": "Let $U$ be a domain, convex in $x$ and symmetric about the y-axis, which is contained in a centered and oriented rectangle $R$. \\linebreak If $\\tau_A$ is the first exit time of Brownian motion from $A$ and $A^+=A\\cap \\{(x,y):x>0\\}$, it is proved that $P^z(\\tau_{U^+}>s\\mid \\tau_{R^+}>t)\\leq P^z(\\tau_{U}>s\\mid \\tau_{R}>t)$ for every $s,t>0$ and every $z\\in U^+$.", "revisions": [ { "version": "v2", "updated": "2005-02-02T21:02:41.000Z" } ], "analyses": { "subjects": [ "60J65", "60K99" ], "keywords": [ "first exit time", "brownian motion", "conditional distribution", "sharp inequality", "oriented rectangle" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......2057H" } } }